

A methodology to choose the best building direction for Fused Deposition Modeling end-use parts

Miquel Domingo-Espin, et. Al

- Objective
- Methodology
 - User specifications
 - Determining orientations
 - Surface finish
 - Cost
 - Mechanical behavior
- Optimal orientation
- Conclusions

Objective

Defense the heaf

Why building direction?

- The most influential parameter in FDM
- Affects:
 - Surface finish
 - Staircase effect
 - Cost
 - Building time
 - Amount of material
 - Mechanical behavior
 - Anisotropy

Surface finish

- Staircase effect:
 - Layer height dependent
 - Always present

Source: P. M. Pandey et al. *Real time adaptive slicing for fused deposition modeling*, IJMTM, 43(1), 2003

Mechanical behavior

- Most suitable constitutive model: Orthotropic
- There are three primary directions X, Y and Z (FDM machine coordinate system)

User specifications

- Loads and fixtures
 - Loads applied to the part during operation
 - Fixtures applied to the part during operation

User specifications

- Trade-offs: importance percentage of each quality
 - Surface finish (td_{SR})
 - Cost (td_c)
 - Mechanical behavior (td_S)
 - $td_{SR}+td_{c}+td_{S}=100$
- User freedom to choose what feature is relevant

- Convex hull
- Flat surfaces
 - Most suitable to be building bases
 - Longest dimension aligned with the X-building axis

Determining orientations

Source: W. Cheng et al. *Multi-objective optimization of part building orientation in stereolithography*, RPJ, 1(4), 1995

Surface finish

- Methodology based on W. Cheng et al.
 - For each orientation a objective value is calculated

$$SR_i = \sum_{j=1}^n N_{ij} \cdot \xi_j$$

• The final value is the ratio between the best orientation objective value and each orientation objective value

Source: W. Cheng et al. *Multi-objective optimization of part building orientation in stereolithography*, RPJ, 1(4), 1995

Surface finish

- Considers:
 - Time
 - Amount of material

$$C_i = 1 - [(M_i + T_i) / max(M_i + T_i)]$$

 The final value is the ratio between the best orientation objective value and each orientation objective value minus one

Orientation	1	2	3	4	5	6	Units
Time	221	224	235	218	221	221	min
Model material	68.19	68.14	66.91	67.67	67.10	67.10	cm ³
Support material	22.12	33.22	14.00	19.72	16.53	16.53	cm ³
Objective value	0.040	0.017	0.000	0.055	0.048	0.048	-

- Mechanical characterization
- Finite element analysis (FEA) and physical correlation
- Objective function value

- Stiffness Matrix
 - Elastic modulus
 - Poisson's ratio
 - Shear modulus

$$\left\{ \begin{array}{c} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\varepsilon}_{z} \\ \boldsymbol{\gamma}_{xy} \\ \boldsymbol{\gamma}_{yz} \\ \boldsymbol{\gamma}_{yz} \end{array} \right\} = \left[\begin{array}{ccccc} 1/E_{x} & -\boldsymbol{v}_{xy}/E_{y} & -\boldsymbol{v}_{xz}/E_{z} & 0 & 0 & 0 \\ -\boldsymbol{v}_{xy}/E_{x} & 1/E_{y} & -\boldsymbol{v}_{yz}/E_{z} & 0 & 0 & 0 \\ -\boldsymbol{v}_{xz}/E_{x} & -\boldsymbol{v}_{yz}/E_{y} & 1/E_{z} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G_{xy} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G_{yz} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G_{yz} \end{array} \right] \cdot \left\{ \begin{array}{c} \boldsymbol{\sigma}_{x} \\ \boldsymbol{\sigma}_{y} \\ \boldsymbol{\sigma}_{z} \\ \boldsymbol{\tau}_{xy} \\ \boldsymbol{\tau}_{yz} \end{array} \right\}$$

Mechanical characterization

- ASTM D638: Standard Test Method for Tensile Properties of Plastics
- 30 samples (5 for each orientation)
- Building parameters:
 - Diameter nozzle: 0.254 mm
 - Part interior style: Solid Normal.
 - Visible surface style: Enhanced
 - Support style: Breakaway

• Stress

Displacement

Physical correlation

• Printed test parts

Physical correlation

Physical correlation

Physical correlation

• Preliminary results

Mechanical behavior

- Objective function value
 - Safety factor

 The objective value for each orientations is the ratio between its safety factor and the maximum safety factor

Optimal orientation

• For each orientation a final objective value is calculated:

$$O_i = SR_i \cdot td_{SR} + C_i \cdot td_C + S_i \cdot td_S$$

• The highest objective value would be the best orientation according to the tradeoffs specified.

Conclusions

- An objective and quantitative selection of orientation of FDM end-use parts is possible
- The proposed methodology finds the best orientation according to user specification of surface finishing, cost and mechanical behavior
- Further research is needed to explore more building parameters and additional materials
- The described methodology can be applied to other AM technologies with minor changes.

Thanks for your attention

PERSONA CIENCIA EMPRESA

Universitat Ramon Llull

Miquel.domingo@iqs.url.edu

